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We discuss problems of best approximation with constraints in (a) an abstract
Hilbert space setting and (b) a concrete form involving polynomial approximation.
One problem is to compute the Hilbert space distance from a fixed vector h to the
set of vectors Ad such that IIBdl1 ,,; M, where A, B are given linear operators and M
is a positive constant. A related concrete problem is to find the U(JL )-distance from
a fixed function h to the set of polynomials p that satisfy JIpl2 dv,,; M 2

, where JL, v
are nonnegative, finite Borel measures on the unit circle and M is a positive con­
stant. In particular, the dependence of this distance on the singular components of JL
and v is investigated. © 1988 Academic Press. Inc.

1. INTRODUCTION

A classical problem is to approximate a given vector h in a Hilbert space
by vectors in a linear manifold. In another view, one can think of h as data
to be extrapolated, and approximants as the result of extrapolation. The
imposition of constraints on approximants is sometimes helpful in making
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the extrapolation process stable [4, 22]. Problems can be posed in abstract
or concrete settings; both types are considered in this paper.

Let 9[, 9 2 , K be Hilbert spaces, and let A, B be closed, densely defined,
linear operators on K to 9 1 , 9 2 , respectively. Let h be a fixed vector in
9 I' and let M, .Ie be positive constants. Set

JM := inf{ Ilh - Ad11 2: dE D(A) n D(B), IIBdf <M 2}, (1.1)

Ix := inf{ Ilh - Ad11 2: dE D(A)}

= Ilh-hA I1 2
; (1.2)

here hA is the projection of h on (R(A)) -. We also consider

J;. := inf{ Ilh - Adl1 2+ ),IIBdf: dE D(A) n D(Bl}, (1.3)

Jo := inf{ Ilh - Ad11 2: dE D(A)}

= Ilh-h A I1 2. (1.4)

Appropriate technical conditions are specified in Section 2. For M -+ 00

and ),10,

and

It will be shown that JM always has an extremal vector eM' and eM is
unique if JM > Jw' The infimum J;. has a unique extremal/;.. If M and ). are
suitably connected, then eM = f;.. We exhibit the required connection and
compute the extremal vectors (Section 2). Special cases of these results are
given in Rosenblum [18J, Shapiro [22J, and elsewhere in the literature
such as [2, 13]. The results are abstract generalizations of a method of
Davis [5].

In Sections 3-5 we take up related problems of polynomial
approximation. Let IJ, v be nonnegative, finite Borel measures on the unit
circle r = g: I( 1 = 1}. Let h be a given function in L 2(IJ), and let M, .Ie be
positive constants. Set

SM(IJ, v) :=inf {f Ih-pl 2dIJ:pEf1J, f IpI 2 dV<M2}, (1.5)

Sx(IJ):=inf{flh-PI2dlJ:PEf1J} (1.6)

and

T;.(IJ, v) := inf {f Ih - P1
2 dIJ +.Ie f I P1

2 dv: P E f1J }, (1.7)

Tw(IJ) :=inf{f Ih-pI 2dIJ: PEf1J}. (1.8)
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Under suitable hypotheses, these quantities are independent of the
absolutely continuous components of /1 and v. In the case of absolutely
continuous measures, the abstract theory of Section 2 is applicable; we
interpret the abstract results in this concrete setting.

The unconstrained infimum 5 00 (/1) = To(/1) is computed in Rosenblum
and Widom [20]. The best known case, of course, is h(O = [. Then we
have the classical Szego infimum (Grenander and Szego [8]). Constrained
infimum problems of the type that we study were first treated by Krein and
Nudel'man [11, 12] in connection with an engineering problem. See also
[1,20]. A different type of problem is obtained by imposing constraints on
the degree of a polynomial [23, 24].

NOTATION

D
r
(J

[ljJ

HP

11·11
<', .)

D(· )
R(· )

[', ·r

open disk in C,
unit circle (boundary of D),
normalized Lebesgue measure on r,
set of polynomials,
Hardy class on D or r (as required by context),
norm,
inner product,
domain of an operator,
range of an operator,
column vector; t denotes matrix transpose,
this indicates a definition.

2. BEST ApPROXIMATION IN HILBERT SPACE

Throughout this section, A, B are closed, densely defined linear
operators on a Hilbert space K to Hilbert spaces H" H 2 , respectively. Let
h be a fixed vector in HI, and let hA be the projection of h on (R(A))-.

Define 1M , IX) and JA , Jo by (1.1)-(1.4) for any positive constants M and
A. We adopt the following conditions as standing hypotheses.

(Cl) The set fi) :=D(A)nD(B) is dense in K.

(C2) There is a <5>0 such that IIAdI1 2 + IIBdf~c5lldf for all dEfi).

(C3) The set Afi) is dense in (R(A)) -.

(C4) The vector h A is not of the form h A = Ad, where dE fi) and
Bd=O.

No use of (C4) is made until Theorem 2.6. Its use there is to eliminate a
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trivial case: if (C4) fails, then 1M = I wand J;. = Jo for all positive constants
M and A.

2.1. THEOREM. (i) For any positive constant M, 1M has an extremal vec­
tor eM' If e~, ei, are two extremal vectors for 1M, then Ae~ = Aei,.

(ii) For any positive constant A, J; has a unique extremal vector fi,'

For now eM denotes any extremal vector for 1M, the choice being
immaterial. We will see later that if 1M> I W' then eM is itself unique. By the
definition of 1M , for any ME (0, (0),

By the definition of J;" for any A. E (0, (0),

and Ilh - Af;, II 2 + ),IIBf;11 2 = J;..

Proof (i) It is sufficient to show that

is a closed convex set in HI, since once this is known the assertions of (i)
follow from well-known properties of closed convex sets in a Hilbert space.

It is clear that C M is convex. If a is in the closure of C M' then Adn -+ a

strongly for some sequence {dn } f in 22 such that II Bdn f ~ M 2 for all n ~ 1.
By weak compactness we can assume that Bdn -+ b weakly for some b in
H 2 • By replacing {dn } f by a suitable sequence of convex combinations, we
can in fact assume that Bdn -+ b strongly in H 2 . By (C2), for all m, n ~ 1,

Therefore dn -+ d strongly for some d in K. Since A and B are closed, dE
D(A) n D(B) = 22, Ad= a, and Bd= b. It follows that a E CM, and so CM is
closed and (i) follows.

(ii) We view HI x H 2 as a space of column vectors. Define a closed
linear operator C;, on K to H I X H 2 by

and

For any dE 22,

Ilh - Adl1 2 + ),11 Bdll 2 = II [h, 0]' - C; d11 2
.

For some sequence {dn}f in 22,
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A standard application of the parallelogram law shows that C A dn ..... [u, v] I

strongly, where u E"I, V E"2' and Ilh - ul1 2+ IIvl1 2= JA• An application of
(C2) as in the proof of (i) shows that dn ..... fA strongly for some fA E K. Since
C;, is closed, fA E!?2 and CJA = [u, v]'. Thusf;. is an extremal vector for J;,.
The uniqueness of fA follows from another application of the parallelogram
law and (C2). I

2.2. THEOREM. For M ..... 00, IM!lw and Ilh A -AeMII ..... O. For ,qo,
J;,! Jo and Ilh A - AfJ ..... O.

Proof By (C3) and the definitions of Iw and Jo,

The rest is elementary and left to the reader. I

2.3. LEMMA. Fix ME (0, (0).

(i) Let dE!?2, and suppose that there is an e>O such that

IIB(r:xe M+ f3d)11 2
~ M 2 (2.1 )

for all r:x, f3EC satisfying 1r:x1 2+ 1f312~ 1 and 1f31 ~e. Then h-AeM1- Ad

in "1'
(ii) If dE!?2 and BeM1- Bd in "2' then h - Ae M1- Ad in HI'

(iii) We have <h - Ae M, Ae M)? O.

Proof As a preliminary, note that if d E ~ and r:x, f3 are any numbers
satisfying (2.1), then

Ilh - Ae MI1 2~ Ilh - A(r:xe M+ f3d)11 2

= II h - AeM- A ((r:x - 1) eM + f3d) r.
Expanding and simplifying, we obtain

o~ 2 Re(l- r:x)<Ae M, h - Ae M) - 2 Re f3<Ad, h - AeM)

+ IIA((r:x - 1) eM + f3d)11 2. (2.2)

To prove (i), in (2.2) set r:x = 1 - ( and f3 = (2t - (2) 1/2 eiO
, where ( is a

small positive number and () is chosen so that
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for t 1o. Hence (Ad, h - AeM) = 0, and this proves (i).
We obtain (ii) in a routine way from (i).
To prove (iii), consider any real 8 with cos 8> O. Set a = 1 - te HI

, where
t > o. Then for all sufficiently small t, lal < 1. Applying (2.2) with ~ = 0, we
get

for tl0. Hence Re eie(AeM,h-AeM)~O. By the arbitrariness of 8, (iii)
follows. I

2.4. LEMMA. Fix ME (0, OCJ) and assume 1M> I ex. Then

(i) II Be Mf = M 2 and

(ii) there is a unique positive real number A( M) such that

(h-AeM' Ad) =)o(M)(BeM' Bd) (2.3 )

for all dE [2.

Proof The inequality II Be MI1 2 ~ M 2 is automatic. If this inequality is
strict, then by 2.3(i),

(2.4 )

Then by (C3), h-AeM.l R(A), and so AeM=h A • However, this implies
1M = I ex' contrary to assumption. This proves (i).

To prove (ii), consider any dE £2, and set

Then aE£2 and BeM.lBa in H 2 • By 2.3(ii),

0= (h-Ae M, Aa)

= IIBeMI1 2 (h - AeM' Ad) - (h - Ae M, AeM)(BeM, Bd).

Thus (2.3) holds with

A(M) = (h - AeM, AeM)/IIBeMf

= (h-AeM' AeM) M- 2
•



88 ANDERSON ET AL.

By 2.3(iii), .l.(M)~O. If .l.(M) =0, then by (2.3), (2.4) holds. As above this
implies (via (C3)) that 1M = I x)' a contradiction. So .l.(M) > 0. The
uniqueness of .l.(M) is clear. I

We next introduce a certain family {TJ b 0 of selfadjoint operators on
K. Formally we would like to set

T) = A *A + .l.B*B

for any .l. E (0, (0). The rigorous definition is

(2.5)

where C):= [A, .l.1/2Br is as in the proof of Theorem 2.1(ii). Thus C) is a
closed, densely defined linear operator on K to HI X H 2 viewed as a space
of column vectors. It follows that T) is a selfadjoint operator (Riesz and
Sz.-Nagy [15, p. 312]), and D(T)) ~ D(C)J =~. By (C2) the spectrum of
T) has a positive lower bound. Therefore T: I and T; 1/2 exist as
everywhere defined and bounded linear operators on K. It is easy to see
that the range of C), R(C)J = C).~, is a closed linear manifold in HI x H 2 .

2.5. LEMMA. Fix.l. E (0, r:JJ).

(i) The operators

and

are everywhere defined and bounded on K with IIAJ :::; 1 and IIB)II :::;.l. -1/2. In
fact, the operator on K to HI X H 2 defined by

W).:= [A),.l. 1/2B)r

maps K isometrically onto C)~. Hence

is the identity operator on K, and

is the projection of HI x H 2 onto C)~.

(ii) The operators AT;I and B(AT;I)* are everywhere defined and
bounded on K and HI' respectively.

(iii) For each dE~ there exist vectors {dEL>o in D(T;.) such that
dE -+ d strongly in K and C) dE -+ C). d strongly in H I X H 2 as B! 0.
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Proof Let C" = VH be the polar decomposition of C;. (von Neumann
[14]). Then H=(CfCJ I

/
2 = TJi2. Hence D(H)=D(TY2)=D(CJ=.@. The

operator V is an isometry on K to H I X H 2 with range C;..@. Since T; 1:2

exists as an everywhere defined and bounded operator on K,

V=C;J;I/2= [A;., ll/2B;J'.

In other words, V = Wi' The assertions of (i) now follow.
It is easy to deduce (ii) from (i).
To prove (iii), given dE.@ set

de = (/+ I:TJ-I d, I: > 0.

Then de E D( TJ for all I: > 0. In a straightforward way we obtain de -4 d
strongly in K, and

C"dc = W;.(/+I:TJ- 1 Ty2 d-4 W;TJi2 d=C;d

strongly in HI x H 2 as I:! 0. I
We are now ready to state and prove the main result of this section.

2.6. THEOREM. Define

m(t) := IIB(ATt-
I )* h11 2, 0< t < 00,

m(O):= sup m(t) (~ 00).
0<1<00

(2.6)

(2.7)

Then m(·) is a positive, strictly decreasing, continuous function on (0, 00)

with limit °at 00. Let M be a positive constant.

(i) If M2~m(0), then IM=Ix .

(ii) If M 2< m(O), then 1M> I x' In this case, M 2= mU) for a unique
A. E (0, 00). Then 1M and J;. have the unique extremal vector

(2.8 )

and

(2.9)

The condition (C4) will put in its first appearance in the proof of
Theorem 2.6. It is not used in either of the following two lemmas.

2.7. LEMMA. For any t E (0,00),

B(ATt-I)* = lim Be(/ + tBi Be) -I Ai
dO

in the operator norm.

(2.10)
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2.8. LEMMA. Define m(t) for tE(O, (0) by (2.6). There is a nonnegative,
finite Borel measure p on [0, (0) such that p( [0, (0)) ~ II h 11 2 and

m(t)=! s2(I+ts2)-ldp(s)
[O,oc )

for all t E (0, (0).

Proof of 2.7. We first show that for any e > 0,

and

(2.11 )

(2.12 )

(2.13 )

All of the operators appearing in (2.12) and (2.13) are everywhere defined
and bounded. It is enough to check (2.12) on a dense set; a convenient
choice for this is R(TtH ). Thus the proof of (2.12) reduces to showing that

(T; 1Tr+,u, g> - (u, g> = e( T r-
1/2B:Bu, g>

for all u E D( T r + ,) and a dense set of g's in K. The identity is easily verified
for gER(Tr), and so (2.12) follows. We similarly reduce (2.13) to showing
that

for all u E D( T t H) and a dense set of g's in K. A convenient choice now is
gER(T:/2). The details are straightforward, and (2.13) follows.

By (2.13),

B(AT;+\)* = B(AT; 1/2(/+ tB: BJ-l T; 1/2)*

=B,(/+tB:B,)-1 A:.

Hence by (2.12),

B(ATr-
1)* - B,(/ + tB: B,)-I A: = B(A(Tt-

1- T t-+
1,))*

= B(AT; 1/2B:Bt +, T;+1~2)*

We obtain (2.10) from this, because by 2.5(i), IIArl1 ~ 1, IIB t l1 ~ (-1/2,

IIBtH l1 ~ (t+e)-1/2. I
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Proof of 2.8. By Lemma 2.7, for all t E (0, CfJ),

m(t) = IIB(ATr-
I )* hl1 2

= lim IIBo(/ + tBi BJ -1 Aih11 2
•

o!O

Let Bo = VoHo be the polar decomposition of Bo ' Let

H o = f s dEo(s)
[O,x; )

91

be the spectral representation of H o ' The spectral measure Eo(') is com­
pactly supported, but we make no use of this fact. Thus,

m(t)=lim IIHo(/+ tH;)-1 Aihl1 2

dO

where

is a nonnegative Borel measure on [0, CfJ) with

by 2.5(i). The existence of a measure p having the required properties now
follows from a routine compactness argument. I

Proof of Theorem 2.6. The heart of the argument is in the proof of
assertion (A) below.

(A) Let 0< M < 00 be given, and assume 1M > I x;' Let A= ).(M) be
the positive constant of Lemma 2.4. Then the extremal vector eM for 1M is
unique, M 2 =m().), and (2.8) and (2.9) hold.

Proof of (A). Consider any UE K. We apply (2.3) with d:= T; lU, We
have dE D( T;J s;!?2I, and so

<h, AT;~ lU) = <AeM' AT; lU) + A<Be M' BT;~ lU)

= <C;eM, C;T;~lU) = <eM' u).

The last equality is by (2.5). Therefore eM is unique and eM=(AT;I)*h.

640/52/1·7
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We show that eM is also extremal for J;" that is, the choice d = eM
minimizes

Ilh - Adl1 2 + JellBdl1 2 = II [h, OJ - C;, dl1 2

among all vectors din 22. A sufficient condition for this is that

(2.14 )

By 2.5(iii) it is enough to prove that

[h, 0J - C;,eM -l C;d

for any dE D( T;J. If dE D( T;J, then

<[h, OJ - C;eM, C", d) = <h, Ad) - <eM' T;d)

= <h, Ad) - <h, (AT; 1) T;. d)

=0.

Therefore (2.14) holds, and we have shown that eM is extremal for J",. Since
J;, has the unique extremalf", by Theorem 2.1(ii), (2.8) holds.

The rest is immediate. By Lemma 2.4(i), M 2 = m(Je). To prove (2.9),
evaluate 1M and J;, by setting d = eM in (1.1) and d = fA, in (1.3). This com­
pletes the proof of (A).

We finish the proof of Theorem 2.6. By (C4) there is at least one
ME(O, (0) such that IM>Ioo • By (A) there is a positive constant Je(M)
such that m(Je(M)) = M 2 > O. Therefore the measure p in Lemma 2.8 is not
trivial: p( (0, (0)) > O. Hence by the representation (2.11), m( . ) is a positive,
strictly decreasing, continuous function on (0, (0) with limit 0 at 00.

Define M o := sup{M: 1M > l oo }. In view of (A), we will be done if we can
show:

(B) M~ = m(O).

Proof of (B). By (A), the positive constant Je(M) of Lemma 2.4 satisfies

M 2 = m(Je(M)) (2.15 )

for 0 < M < Mo. As Mj M o, Ilh - AeMl1 --+ 0 (if M o= 00 this follows from
Theorem 2.2; the case M 0 < 00 is handled by a separate argument). Hence
as Mj M o,

Therefore we obtain M~ = m(O) on letting Mj M o in (2.15). This completes
the proof of (B) and, with (B), the theorem. I
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3. POLYNOMIAL ApPROXIMATION:

REDUCTION TO THE ABSOLUTELY CONTINUOUS CASE

93

Let /.1, v be nonnegative, finite Borel measures on r, and let h be a given
function in L 2(/.1). Define SM(/.1,V), Soo(/.1), and T;(/.1, v), T"J/.1) by
(1.5 )-( 1.8) for any positive constants M and A. Let

/.1 = /.1ac + /.1"

v = Val' + Vs'

d/.1ac = uda,

dv ac = vda
(3.1 )

be the Lebesgue decompositions of /.1, v.
It is known that Soo(/.1) = Soo(/.1a,.), or, what is the same thing,

T 00(/.1) = T oo(/.1ac)' See Rosenblum and Widom [19]; the special case
h(O = [is a classical theorem of Kolmogorov and Krein (Grenander and
Szego [8]).

3.1. THEOREM. If /.1s 1. v" then for any positive constants M and ).,

(3.2 )

and

(3.3 )

The following lemma isolates the essential content of the theorem.

3.2. LEMMA. Assume !Jsl.v,. Given PE[1J> and £>0, there exists PE[1J>
such that

f - 2 f 2IPI dv < IPI dv Q(. + £.

(3.4 )

(3.5 )

Proof of Theorem 3.1 (granting Lemma 3.2). It is clear that for any
positive constants M and A,

Given £ > °we can choose P E [1J> so that
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By making a small adjustment, we can assume that the last inequality is
strict. Then by Lemma 3.2 there exists PE flI> so that

Hence SM(Jl., v) < SM(Jl.aC' vaJ + c. By the arbitrariness of c, (3.2) follows.
Similarly, given c>O we can choose PE~ so that

Then by Lemma 3.2 there exists PE flI> so that

and so T;.(Jl., v)< T;.(Jl.aC' vaJ+c. Since c is arbitrary, we obtain (3.3). I

Proof of Lemma 3.2. Fix c > O. We write cl' C2'''' for small positive
numbers to be chosen in the course of the argument. Set

We proceed in a number of steps.

(i) Choose disjoint, closed subsets E, F of r such tha't
u(E) =u(F) =°and

and

Such sets exist because Jl.., vs are singular measures with Jl.s -l vs> and every
finite Borel measure on r is regular.

(ii) Let qT) be the set of continuous, complex-valued functions on
r, and let d := n°o n qT) be the disk algebra. By a theorem of Rudin
and Carleson (see Garnett [7, pp. 125-126, Ex. IdJ), there exists qEd
such that Ilqlloo = 1 and qlE= 1 and qIF=O.

(iii) Choose sequences {Pn}r and {tn}r in ~ such that

(a) iPnl::;; 1 and itni ::;; 1 on 15 for all n ~ 1,
(b) limn _ 00 JPn dJl.s = Jl.AT) and limn _ 00 J t n dv s= vs(T), and
(c) limn_ ro Pn(O=limn~oc 1: n(O=O u-a.e. on r.
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Concerning the existence of such polynomials, see Garnett [7, p. 126,
Ex. 2].

(iv) Choose HEC(T) such that SIH-hI2dp<£3' See Rudin [21,
p.68].

(v) Choose QE.91 such that IIQlloo= IIHllx. and QIE=HIl: (Garnett
[7, pp. 125-126, Ex. IdJ).

(vi) Define {p,,}rs;d by

P,,=P(1-Pn)(I-Tn)+QPnQ, n~1.

For all n ~ 1,

IIPnll'lj:;:; 411PII 'lj + IIHII 00"

The idea of the proof is to show that for some function P" E d construc­
ted in this way,

(3.6)

(3.7)

Every function in d is the uniform limit of the Cesaro means of the partial
sums of its Fourier series (Hoffman [9J). Therefore from (3.6), (3.7) we see
that there exists a PE;J} satisfying (3.4), (3.5); that is, the result follows
from (3.6), (3.7).

We estimate the integrals

Put

and

and

and

/,,( := f IPn l

2 dVl/l'

cf... := f IP,,1 2 dv,.

We make repeated use of Minkowski's inequality.
To begin,
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By (iii) and the Lebesgue dominated convergence theorem, the second term
on the right tends to 0 as n -> 00. Therefore

for all sufficiently large n, say n > n I'

For .~ we have,

say. By (v),

( )
I~

(.~.dl/2 = f I(h - H) + (H - QW dfls

~ (f Ih - HI 2 dfl s) 1/2 + (t\E IH _ QI 2dfl s) 1/2.

Hence by (iv), (v), and (i),

From (v), (iii), and (ii),

By (iii),

f 11 - Pnl 2dfls = f (l + IPnI 2) dfls - 2 Re fPn dfls

~ 2 [fls(r) - Re f Pn dfl '] -> O.

(3.8)

(3.9)

Hence JII-PnI2dll,,<Cs for all sufficiently large n, say n>n2. So for
n>n 2 ,

(3.10)
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(3.11 )

Combining (3.9), (3.10), and (3.11), we obtain

(,;y I2 ~ (,;-,.1)1/2 + (,;,.2)1/2 + (~'.3)1/2

< £j!2 + 211HII x £:/
2 + IIHII x (£~/2 + 2£j!2) + 211PII co £11

2

= 411HII co £j!2 + £~/2 + (IIHII x + 211PII x) £~/2 (3.12)

for n > n2 . By (3.8) and (3.12),

,j = ~c +.,,"

< (a 1/2 + £4)2 + [411HII co £:/
2 + £~/2 + (IIHII x + 211P11 co) £~/2J2

for n > max(n l' n 2 )· If £ I' £3' £4' £5 are small enough, this yields (3.6) for all
n > max(n l' n 2 )·

For ~a( we have

( )

1/2

(~ac)1/2 ~ f IPI 2 dv ac

+ (f IP(Pn + Tn - Pn Tn) - Qp"QI2 dv(,,) 1/2.

By (iii) and the Lebesgue dominated convergence theorem, the second term
on the right tends to 0 as n ---+ 00. Hence

(~u<)1/2 ~ pl/2 + £~/2

for all sufficiently large n, say n?: n3' Also,

(3.13 )

An argument similar to one given above shows that J11 - T,,1 2 dv, < £7 for
all sufficiently large n, say n > n4 • Recalling also (i), we obtain, for n > n4 ,

(jl,)1/
2
~ 211PII co £Y2 + IIQII co £~/2

= 211PII 00 £~/2 + IIHII x £~/2. (3.14 )
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By (3.13) and (3.14),
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,I = ,lac + fs
< ([J1 /2+ e~/2)2 + (211PII oc ej/2 + IIHlloc e1/2 )2

for n > max(n3, n4 ). If e2, e6 , e7 are small enough, we obtain (3.7) for all
n > max(n3, n4 ).

We have shown that (3.6) and (3.7) hold for some PnEd, and so the
result follows. I

4. POLYNOMIAL ApPROXIMATION: ABSOLUTELY CONTINUOUS MEASURES

Notation is as in Section 3. We have seen that (1.5)-(1.8) are indepen­
dent of the singular components of /l and v (at least when /ls 1.. vs )' The
unconstrained infimum Soo(jlac), or, what is the same thing, To(/laJ, is
computed in Rosenblum and Widom [19]. In this section we apply the
abstract theory of Section 2 to compute SM(/laC' vaJ and T;. (/laC' Vat) for
any positive constants M and A.

We exclude certain trivial cases in order to simplify the discussion.

Case 1. /lac = 0 or Vac = O.

In the former case, SM(/laC' vaJ = T;.(/lac, vac )=0 for any positive con­
stants M and A, and in the latter, SM(f.1an vaJ = T;.(f.1aC' vac ) = Soo(/laJ =
To(f.1aJ for any positive constants M and A.

Case 2. h 1.. f!} in L 2(/lac)'

In this case, SM(/laC'vaJ=TA(f.1aC'Vac)=JlhI2d/lac for any positive
constants M and A.

The discussion is also simplified if polynomials are replaced by Hardy
class functions. Recall from (3.1) that d/l ac = uda and dv ac = vda. We assert
that for any positive constants M and A,

SM(/laC' vaJ = inf {f Ih - kl 2 uda: k EH 2
,

f Ikl 2 (u + v) da < 00, f Ikl 2 vda ~ M 2}, (4.1)

Soc (/laJ = inf {f Ih _k1 2uda: kEH 2
, f Ikl 2 vda < oo} (4.2)
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T; (Pa" vac) = inf {f I h - k 1

2 ud(J + ), f I k 1

2 vd(J:

kEH2,flkI2(U+V)d(J<CD}, (4.3)

To(Pac) = inf {f Ih - kl 2ud(J: k E H 2
, f Ikl 2 vd(J < CD }. (4.4)

The advantage of (4.1 )-(4.4) over (1.5 )-( 1.8) is that H 2 is a Hilbert space
whereas [ij! is not. This is crucial for applying the results of Section 2. The
formulas (4.1 )-(4.4) are immediate consequences of

4.1. LEMMA. Suppose that k belongs to H 2 on the circle rand
f Ikl 2 wd(J < CD, where 0 ~ WE L 1((J). Then there exist polynomials {PI1} r
such that

lim flk-PI112Wd(J=0.
11- ex

(4.5)

Proof By replacing w by w+ 1, we can assume that log WE L 1((J). Then
w = Igl2 (J - a.e. for some outer function g E H 2

. We have kg E H 2 because
kgEH' and

Therefore by Beurling's theorem (Duren [6]) there exist polynomials
{PI1} r such that Pl1g ---+ kg in the metric of H2

• Since w = Igl 2 (J - a.e., this
implies (4.5). I

4.2. THEOREM. Exclude Cases 1 and 2 above and assume further that
u + v ~ 6 (J - a.e. for some 6> O. For any t E (0, CD) define functions c, and f/
on D hy

(
If(+Z y y )c,(z):=exp "2 (_zlog[u(I,)+tv(I,)]d(J(O ,

f(z):= cJz)-' fh(O (;/(0 1 u(O d(J(o.
1-(z

(4.6)

(4.7)
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o<t<oo,

Then for any tE(O, 00), c"f,EH2 and l/c,EH oo
• Further define

m( t) := f Iftl 2 vd(J,

m(O):= sup m(t)( ~ 00).
O<l<'X

Then m( . ) is a finite-valued, positive, strictly decreasing, continuous function
on (0, 00) with limit °at 00. Let M be a positive constant.

(i) If M 2 ?m(0), then SM(J1an vae )=Soo(J1aJ·

(ii) If M 2 <m(0), then SM(J1a<0,VaJ>Soo(J1aJ, and M 2 =m(),.) for a
unique )~ E (0, 00). Moreover,

and SM(J1an Vac) and T)JJ1an vaJ each have the unique extremal function f)o'

It should be noted that it is only in the forms (4.1) and (4.3) that the
infima SM(J1an vaJ and TA(J1an vae) are attained. In the original forms (1.5)
and (1.7) they are not attained, in general, even when J1 = J1ac and v = vae'

Proof For each t E (0, 00), c, is the unique outer function such that
c,(O) > 0 and

(J - a.e. on r. (4.8 )

Let A, B be the inclusion mappings from K to HI, H 2 , respectively. Thus
D(A), D(B), and !!fi := D(A) n D(B) consist of all k E H 2 for which

f Ikl 2 ud(J, and f Ik 1
2 (u + v) d(J,

respectively, are finite. In the notation of Section 2, the formulas (4.1 H 4.4)
take the form

The conditions (C1 )-(C4) of Section 2 are readily verified from our
assumptions. We check only (C4). It is to be shown that there is no dE!!fi
such that Ad=hA in L 2(ud(J) and Bd=O in L 2(vd(J). Argue by contradic­
tion. If d is such a function, then Idl 2 v = 0 (J-a.e. on r. We have excluded
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(4.9)

the possibility that v = °a-a.e. (Case 1 at the beginning of Section 4), and
so d = °on a set of positive measure. By the F. and M. Riesz theorem,
d = °a-a.e. Hence h A = Ad = °in L 2(uda). However, this possibility is also
excluded (Case 2 at the beginning of Section 4). Therefore no such d exists,
and (C4) holds.

We will show that for each t E (0, CX)), (AT,- 1)* h coincides with the
function!, defined by (4.7). Once this is known, the remaining assertions of
Theorem 4.2 follow as a special case of Theorem 2.6.

Claim. For each t E (0, 00) and rx E D,

T,-I: l/(1-iO--+c,(rx)-1 c,(O-I/(l-iO.

To see this, fix rx E D and set

(4.10)

To prove (4.9) is sufficient to show that g, is in the domain of T, = C ,* C,
(this is the definition of T,; see (2.5)) and

T,: g,(O --+ 1/(1 - iO-

Now g, E HCJJ and so g, E f2 = D(C,). It is therefore enough to show that

<C,k,C,g)=<k(o, l/(1-riO)

for every kED(C,)=f2. The identity (4.11) is equivalent to

f kg,uda + t f kg,vda = !(rx).

By (4.8) and (4.9), this reduces to

which holds by Cauchy's theorem for H I. The claim follows.
Finally, for any t E (0, CX)), by (4.9) we have

((AT,-I)* h)(rx) = <h(O, AT,-I {l/(1-riO})

_ ( )-1 fh(O C,(O-I u(O d (V)-c,rx r a(,
1 - srx

= !,(rx)

(4.11 )

for all rx E D. Thus (AT(- 1)* h =!n and as noted above the remaining
assertions of Theorem 4.2 follow from Theorem 2.6. I
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Remark. The operator T( that appears in the proof of Theorem 4.2 is a
Toeplitz operator (in general, unbounded). Formula (4.9) is equivalent to
the generating formula for resolvents [3, 10, 16, 18]. An alternative proof
of (4.9) can be given along these lines, but when everything is considered, it
is much more complicated in the unbounded case than the argument given
above. In the bounded case, the proof of (4.9) via the generating formula
for resolvents is prabably more transparent than the argument given above.

5. CONSTRAINED FORMS OF SZEGO'S INFIMUM

Let /l be a nonnegative, finite Borel measure on r with Lebesgue decom­
position as in (3.1). For any positive constants M and A set

SM(/l) :=inf{f If-pI 2d/l:pEfl}, f IPI2da~M2}, (5.1)

Sw(/l) := inf {f If- pI 2d/l: P E fl}} (5.2)

and

T;(/l) :=inf{f If-pI 2d/l+A f IPI2da:PEfl}}, (5.3)

To(/l) := inf {f If- pI 2d/l:p E fl}}. (5.4)

By the classical Szego infimum (Grenander and Szego [8]),

log uEL 1(a),

log U ¢ L 1(a).

The infima (5.1 )-(5.4) correspond to (1.5 )-( 1.8) with h(0 = f and v = a.
The results we state here strengthen and extend those of [1] on Sezgo's
infimum with constraints.

5.1. THEOREM. For any positive constants M and A,

and

5.2. THEOREM. Assume that /lac is not identically O. For any t E (0, 00),

define

(If'+Z )c,(z) := exp "2 ,_ Z 10g[u(O + t] da(O ,

f,(z) :=z-l[l-c,(O)/c,(z)]

(5.5 )

(5.6)
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m(t) := f (u + t) -I dcr exp (f log(u + t) dcr) - I,

m(O):= sup m(t)( ~ OJ).
0</<1
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(5.7)

Then m(·) is a positive, strictly decreasing, continuous function on (0, OJ)

with limit 0 at OJ. Let M and Jc be positive constants.

(i) If M2~m(0), then SM(flaJ = Sx(flac)'

(ii) If M 2= m().), then

JcM2+ SM(fla<) = T;. (fla,) = exp (f log( u + Jc) dcr) - )" (5.8)

and SM(flac) and f; (fla,) each have the unique extremal/;.

Proofs. Theorems 5.1 and 5.2 are particular cases of Theorems 3.1 and
4.2. We leave the straightforward calculations to the reader. I

Remark. As in [1], a little more can be said in Theorem 5.2. Namely,
m(O)< OJ if and only if I/UEL1(cr). In this case, assertion (ii) is true as
stated for Jc = 0 if Co and fo are defined by (5.5) and (5.6) with t = O. We
omit the proofs of these assertions.

5.3. EXAMPLE. We have SM(fl)l Soo(fl) as M -+ 00 and T;.(fl)l To(fl) as
),10. It is natural to ask for the rates of convergence. We are unable to
determine this in general, but we compute an example that may be instruc­
tive.

Let dfl = udcr, where u = XE is the characteristic function of a Borel set
E£r with 0< lEI < I (lEI =cr(E)). Then Soo(fl) = To(fl) =0, so SM(fl)lO
as M -+ OJ, and TM(fl) 10 as Jc 1o. It turns out that the rates of convergence
depend only on lEI. We state this result in slightly more general form as
follows.

PROPOSITION. Let dfl = udcr, where u = 0 cr - a.e. on a Borel set E £ r
such that 0 < lEI < I and u f= 0 cr - a.e. on L1 := r\ E, with JLI log udcr > -OJ.

Then

- c
SM(fl) = M 2IEI/(I-IEll (1 + (!)(1))

T;.(fl) = DJcIEI(1 + (!)(l))

as M -+ OJ,

as 11.10,

(5.9)

(5.1 0)

where C and D are positive constants depending only on IEI and SLI log ud(J.
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Proof We apply Theorem 5.2. We are in the case m(O) = 00. Let M and
}. be related by M 2 = m( A), so M --+ 00 corresponds to A1o. For 0 < A< 00,

by (5.7),

m(A) = f (u + A)-I da exp (f log(u + A) da) - 1

= (L A-I da +L(u + It) - 1 da) exp ( (t + t) log(u + A) da ) - I

= (lEI It -I +L(u + }.) -1 da) AIEl exp (t log(u + A) da) - 1

= lEI A-I+IEI (1 + IEI- 1 t A(U+ n- I da)

x exp (L log(u +A) da) - 1

= IEI A-I +lEI exp (t log Uda) (1 + (D( 1))

as A1O. Since M 2 = m(A), this yields

A= (lEI M- 2 exp (t log Uda) )1/(1-1£1) (l + (D(l )). (5.11)

By (5.8),

SM(/l) =fu(u + A)-1 da exp (f log(u + }.) da)

=Lu(U + A) - 1 da exp ( (L + L) log(U+ A) da )

= ILII AIEl exp (L log Uda) (1 + (D(I))

as M --+ 00. Substituting (5.11) into this last expression, we obtain (5.9)
with

C = (l -lEI )IEIIEI/(I -IEll exp ((1+~) flog uda).
I-lEI .J
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Again by (5.8) and what we have just shown,

T;.(/-t} = SM(Ji) + 2m(2)

= 1,11 )y,1 exp (L log Uda) (1 + 0(1»

+ lEI 2 1EI exp (L log Uda) (1 + (D(l»

= exp (L log Uda) AIE1 (1 + (D(1»

as ),10. Hence (5.10) holds with D = exp(JLl log uda). I
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